<u>Titrage d'acide faible: le vinaigre</u>

Le vinaigre est une solution aqueuse contenant essentiellement de l'acide éthanoïque; la concentration d'un vinaigre commercial est exprimée en degré.

Un degré | . exprime la masse, en gramme, d'acide éthanoïque pur contenu dans 100 g de vinaigre.

(ou) . exprime le rapport de la masse, en gramme, d'acide éthanoïque pur sur la masse de vinaigre.

Un dosage d'un vinaigre est donc un dosage acide-base. Le vinaigre à doser est d'abord <u>dilué au centième</u> et on titre ensuite la solution diluée à l'aide d'une solution d'hydroxyde de sodium.

Objectif: Vérifier par dosage l'information portée sur l'étiquette en ce qui concerne le degré du vinaigre par 3 méthodes différentes: . Titrage colorimétrique V_{eq1}

. Titrage pH-métrique $V_{\it eq2}$ et titrage conductimétrique $V_{\it eq3}$

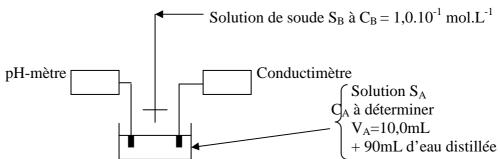
Réactifs

- Vinaigre blanc d'alcool: solution S_0 du commerce à 8° d'acide acétique C_0 inconnue (à diluée $10\times$ pour obtenir C_A)
- Solution S_B d'hydroxyde de sodium $C_B = 1,0.10^{-1}$ mol/L
- Eau distillée
- Solutions étalons pH-métriques (4 et 7)
- Solutions étalons conductimétrique $\sigma = 1413 \cdot 10^{-6} \text{ S.cm}^{-1}$
- Indicateurs colorés: zone de virage:
 - \circ Hélianthine (3,1-4,4)
 - o Bleu de bromothymol (6,0-7,6)
 - o Phénolphtaléine (8,2-10,0)

<u> Matériel</u>

- Pipettes jaugées de 10 mL et propipette
- Burette graduée de 25,0 mL
- Fiole jaugée de 100,0 mL
- Béchers 250 mL (×1), 50 mL (×3)
- pH-mètre + électrode combinée
- conductimètre + sonde conductimétrique
- Agitateur magnétique + barreau aimanté
- Verre à pied

Données


Constantes d'acidité : K_A (H_3O^+/H_2O)= 1 ; K_A (CH_3COOH/CH_3COO^-)= 1,78.10⁻⁵ ; K_A (H_2O/HO^-)= 10⁻¹⁴

Calcul de l'incertitude relative portant sur
$$C_{\text{Aexp}}$$
: $\frac{\Delta C_{\text{Aexp}}}{C_{\text{Aexp}}} = \sqrt{\left(\frac{\Delta C_{\text{B}}}{C_{\text{B}}}\right)^2 + \left(\frac{\Delta V_{\text{B}}}{V_{\text{B}}}\right)^2 + \left(\frac{\Delta V_{\text{A}}}{V_{\text{A}}}\right)^2}$

La solution commerciale S_A de concentration C_0 a été dilué 10 fois afin de pourvoir la doser convenablement d'où une concentration C_A = C_0 / 10.

La densité du vinaigre par rapport à l'eau est pratiquement égale à 1.

<u>Montage</u>

Mettre en œuvre un protocole expérimental.

- a) Réaliser un schéma annoté du dispositif de titrage.
- **b)** Quel est le réactif titrant? Quel est le réactif titré?
- c) Ecrire l'équation de la réaction support du titrage ainsi que son tableau d'avancement.
- d) Pourquoi peut-on utiliser un titrage par colorimétrie.
- e) A l'aide de vos connaissances et de l'équation de la réaction support du titrage, quel indicateur coloré serait le mieux adapté à ce dosage dans la liste proposée? Justifier.
- f) Pourquoi peut-on réaliser un suivi pH-métrique de ce titrage?
- g) Pourquoi peut-on réaliser un suivi conductimétrique de ce titrage?
- **h**) Elaborer un protocole expérimental pour passer de la solution mère S_0 à C_0 à la solution fille S_A à C_A .

1/2

Mode préparatoire

- $^{\circ}$ Réaliser la dilution de la solution mère S_0 à l'aide du protocole proposé à la question h).
- Préparer avec 10,0 mL de solution S_A pour chacun :
 - 1^{er} bécher (50 mL) avec 2 gouttes d'indicateur coloré choisi
 - 2^{ième} bécher (250 mL) avec environ 100 mL d'eau distillée
- Préparer et remplir la burette avec la solution d'hydroxyde de sodium (volume V_B).
- Btalonner le pH-mètre.
- Btalonner le conductimètre.

Titrage rapide colorimétrique: colorimétrique.

- Prendre le 1^{er} béchers préalablement préparé et ajouter 2 gouttes d'indicateur coloré choisi.
- Réaliser le dosage, versé la soude mL par mL
- $Arrêter au changement de couleur et noter le volume à l'équivalence: <math>V_{Beq1} =$

2. Titrage précis: pH-métrique et conductimétrique.

- Prendre le 2nd bécher et faire le montage du titrage par conductimétrie et par pH-métrie.
- 👺 Réaliser le dosage en versant la soude mL par mL au départ puis réduire les ajouts de soude à 0,2mL par 0,2mL dans l'intervalle de la zone d'équivalence (V_{Beq1} -2 $\leq V_{Beq} \leq V_{Beq1}$ +2).
- Noter pour chaque volume versé la valeur du pH et celle de la conductance.
- \succeq Tracer (si possible en simultané) sur la même feuille de papier millimétré pH=f(V_B) et G=f(V_B)

Exploitation

Etude de la courbe pH-métrique.

- i) Déterminer les coordonnées (V_{Beq2} , p H_{eq}) du point d'équivalence par la méthode des tangentes.
- j) Comparer le résultat obtenu avec la méthode colorimétrique.
- **k**) Pourquoi le pH augmente-t-il lors du titrage?
- 1) Que constate-t-on graphiquement lorsque le volume versé est proche du volume versé à l'équivalence?

Etude de la courbe conductimétrique.

- **m**) Déterminer le volume équivalent V_{Beq3}.
- n) Comparer le résultat obtenu avec la méthode colorimétrique.
- o) Expliquer clairement l'évolution de la courbe du titrage en vous aidant de l'équation de la réaction.
- p) Comparer le résultat obtenu avec la méthode pH-métrique et donner l'écart absolu entre ces 2 résultats.

Conclusion

- ${f q})$ Déterminer la concentration molaire C_{Aexp} d'acide éthanoïque dans la solution S_A de vinaigre.
- r) Cibler et relever les différentes incertitudes données par chacun des outils utilisés lors de ce titrage.
- s) En ne considérant que les incertitudes portant sur le calcul de la concentration molaire C_{Aexp} de la solution S_A d'acide chlorhydrique, déterminer l'incertitude relative et absolue.
- t) Donner un résultat avec un encadrement acceptable de la valeur de C_{Aexp}.
- **u**) Quelle est la concentration C₀ d'acide éthanoïque dans la solution commerciale de vinaigre.
- v) A partir de la définition du degré du vinaigre, montrer que: Degré = $\frac{C_0 \times M_{\text{(CH}_3\text{COOH)}}}{d_{\text{(CH}_3\text{COOH)}} \times \rho_{\text{eau}}}$
- w) Déterminer le degré expérimental du vinaigre.
- x) Sachant que le degré donné par le fabriquant est de 8°, calculer l'écart relatif avec votre résultat. Cela vous semble-t-il acceptable?

Pour aller plus loin

Si le temps le permet:

- Tracer sur Synchronie la courbe pH=f(V_B)
- Modéliser la dérivée de cette courbe afin de déterminer le V_{Béq}.
- y) Comparer le résultat trouvé avec celui déterminé par la méthode des tangentes (question i).